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Abstract
The generalist parasite Trypanosoma cruzi has two phylogenetic lineages associated

almost exclusively with bats—Trypanosoma cruzi Tcbat and the subspecies T. c.marinkel-
lei. We present new information on the genetic variation, geographic distribution, host asso-

ciations, and potential vectors of these lineages. We conducted field surveys of bats and

triatomines in southern Ecuador, a country endemic for Chagas disease, and screened for

trypanosomes by microscopy and PCR. We identified parasites at species and genotype

levels through phylogenetic approaches based on 18S ribosomal RNA (18S rRNA) and

cytochrome b (cytb) genes and conducted a comparison of nucleotide diversity of the cytb

gene. We document for the first time T. cruzi Tcbat and T. c.marinkellei in Ecuador, expand-

ing their distribution in South America to the western side of the Andes. In addition, we

found the triatomines Cavernicola pilosa and Triatoma dispar sharing shelters with bats.

The comparisons of nucleotide diversity revealed a higher diversity for T. c.marinkellei than
any of the T. c. cruzi genotypes associated with Chagas disease. Findings from this study

increased both the number of host species and known geographical ranges of both para-

sites and suggest potential vectors for these two trypanosomes associated with bats in rural

areas of southern Ecuador. The higher nucleotide diversity of T. c.marinkellei supports a
long evolutionary relationship between T. cruzi and bats, implying that bats are the original

hosts of this important parasite.
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Introduction
The protozoan parasite Trypanosoma cruzi (order Kinetoplastida) causes Chagas disease, one
of the main tropical diseases in the Americas [1]. The intraspecific genetic variation of this spe-
cies is complex, and several attempts have been made to establish main intraspecific lineages.
Currently, T. cruzi is divided in two subspecies: T. c. cruzi and T. c.marinkellei [2], and even
further, T. c. cruzi is divided in seven discrete typing units (DTUs) (i.e., TcI-TcVI and Tcbat)
[3–6]. Moreover, new investigations have unveiled pronounced structuring within some DTUs
e.g., [7–10]. However, among these subdivisions of T. cruzi, those lineages associated almost
exclusively with bats (i.e., Tcbat and T. c.marinkellei) are arguably the most enigmatic for their
biology and scant documentation.

T. c.marinkellei is restricted to bats, does not infect laboratory mice, and is thought to be
exclusively transmitted by triatomines of the genus Cavernicola [11,12]. Nevertheless, the high
prevalence and wide distribution of this trypanosome subspecies suggest the participation of
other vectors [13]. In contrast, Tcbat like all T. c. cruzi DTUs, proved to be infective to mice
[3]. In addition, Tcbat was recently found in a Colombian child and in pre-Columbian mum-
mies of the Cabuza and Camarones cultures in Chile [14,15]. Tcbat is unable to develop in T.
infestans and R. prolixus [3], and although its vectors remain to be discovered, the occurrence
of this genotype in Brazil, Panamá, and Colombia suggests that it can be transmitted by diverse
vector species.

Phylogenetic studies have demonstrated that Tcbat is sister to TcI, and it has been long
established that T. c.marinkellei is sister to the monophyletic group formed for all DTUs
[3,5,6,16]. Given that T. cruzi sensu lato belongs to the T. cruzi clade, a group of ~18 species
that mostly parasitize bats [17–19], here we hypothesized that bats are the ancestral hosts of T.
cruzi. Thus, it would be expected that the bat lineages of T. cruzi—specially the most basal line-
age that is T. c.marinkellei—would have a greater genetic diversity than the other subdivisions
of T. cruzi.

Here we provide information on the genetic variation, geographic distribution, host associa-
tions, and potential vectors of bat lineages of T. cruzi. We analyze the nucleotide diversity of
the T. cruzi lineages to test the hypothesis that bats are the ancestral hosts of this parasite, and
discuss the implications of our results to understand the origins of T. cruzi and Chagas disease.

Methods

Ethics statement
Permits for field research, allowing handling and euthanizing bats, were granted by the Minis-
terio del Ambiente de Ecuador (002–07 IC-FAU-DNBAPVS/MA, and 008-IC-IN-
SEC-DPL-MA). Bats were euthanized in the field by thoracic compression in 2007 and by
inhalation of carbon dioxide in 2012. The methods we used for manipulation and euthanizing
of bats are in agreement with the guidelines of the American Society of Mammalogists for the
use of wild mammals in research [20]. No protocol of an institutional animal care and use com-
mittee (IACUC) was required for this research because Pontificia Universidad Católica del
Ecuador does not have an IACUC.

Field surveys of bats and triatomines in Ecuador
A total of 74 bats were caught during January 2007 and July 2012 using a butterfly net at roosts
inside human constructions or by mist netting forest patches in the following rural communi-
ties: Bellamaría Chica, Bellamaría, Chaquizhca and Chinguilamaca in Loja province, and Ran-
cho Alegre in Zamora Chinchipe province. Additionally, at the Chinguilamaca and Rancho
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Alegre locations, opportunistic triatomine insect searches within the bat roosts were performed
manually. Taxonomic identification of bats and triatomines was conducted by morphological
examination following [21] and [22], respectively.

Captured bats were euthanized; samples of blood, liver, heart, and muscle tissues were col-
lected, and from the animals captured in 2012, blood smears and trypanosome cultures were
also prepared. A blood aliquot of 150μl was inoculated in biphasic Novy-Nicolle-MacNeal
(NNN) culture and the growth of parasites was tracked weekly by microscopy during the first
month, and then again at three and six months after initial inoculation. Positive samples con-
taining Trypanosoma-like parasites were grown until counts reached more than 100 parasites
per field and were then transferred to Liver Infusion Tryptose (LIT) medium for further
growth.

Detection of trypanosomes
Direct microscopic detection of trypanosomes was performed on the animals captured in 2012.
DNA was extracted from samples of blood, liver, muscle, or positive cultures with the DNeasy
kit (Qiagen, Valencia, CA) following manufacturer´s protocol. Samples were PCR amplified
with the primer sets S35/S36 and 121/122 to detect infections with T. cruzi and T. rangeli,
respectively [23–26]. Products were visualized on 2% agarose gels. No triatomines were ana-
lyzed because of problems with extracting DNA from improperly preserved specimens.

Phylogenetic identification of trypanosome lineages
We sequenced fragments of the 18S rRNA and cytb genes of Trypanosoma from a subset of
eight positive animals from three localities that yielded positive results (S1 Table). Not all the
positive samples were sequenced because animals were collected in groups and most likely
share the same parasite genotypes. To amplify the 18S rRNA, we followed a nested PCR proto-
col [27] with the following modifications: the initial PCR amplification was conducted with the
newly designed primers SSU4_F (GTGCCAGCACCCGCGGTAAT) and 18Sq1R (CCACC
GACCAAAAGCGGCCA); both nested PCR amplifications were run with a touchdown PCR
profile [28]. The cytb gene was amplified following a published protocol [16]. After cleaning
the PCR products with ExoSAP-IT (Affymetrix, Santa Clara, CA), we did sequencing reactions
in both directions with the ABI BigDye chemistry (Applied Biosystems, Inc., Foster City, CA),
and sequenced the fragments on an ABI 3730xl DNA Analyzer automatic sequencer (Applied
Biosystems, Inc., Foster City, CA).

We built a matrix for each gene with sequences of previous studies of lineage diversity of T.
cruzi e.g., [3,5,29,30] and also used sequences of Trypanosoma dionisii and Trypanosoma erneyi
as outgroups [31] (S1 Dataset). We assembled each gene fragment with the Geneious Align-
ment tool in Geneious v. 6.1.8 [32], and the alignments were checked and corrected manually.
The 18S rRNA and cytb alignments were cropped at 863 bp (99 sequences) (S2 Dataset) and
490 bp (362 sequences) (S3 Dataset) respectively. We built a network genealogy for the 18S
rRNA gene with the program SplitsTree v. 4.11.3 using the NeighborNet method [33]. Inter-
node supports were estimated by performing 100 bootstrap replicates using the same parame-
ters optimized for network inferences. For the alignment of the cytb gene we started a
maximum likelihood run in RAxML v. 8 [34] and interrupted it after obtaining the reduced
matrix that contains only one sequence per unique haplotype (S4 Dataset). Following this, we
ran to completion the analysis with the GTR-CAT approximation on the reduced matrix. The
GTR-CAT approximation is a rapid algorithm for ML analyses that resembles the GTR-G
model, but it is optimized for faster performance [35].

Trypanosoma cruzi in Ecuadorian Bats

PLOS ONE | DOI:10.1371/journal.pone.0139999 October 14, 2015 3 / 13



Also, to test the combinability of the 18S rRNA and cytb genes for concatenated phyloge-
netic analysis we used the software MLSTest [36] to run the analysis ILD-BIONJ [37] that is an
efficient variant of the incongruence length difference test [38]. We ran ILD-BIONJ with
reduced alignments that only contained strains represented for both genes. This analysis deter-
mined that our loci had significantly different branching patterns (p = 0.0099), so no further
concatenated analyses were performed.

Comparisons of nucleotide diversity among T. cruzi lineages
We calculated the nucleotide diversity (π) of each T. cruzi subdivision on the cytb tree (i.e., TcI,
TcII, TcIII-TcVI, Tcbat, and the subspecies T. c.marinkellei). In Mega v. 6 [39] we used the
option “compute mean diversity in entire population”, which calculates a nucleotide diversity
index that is independent of sample size (equation 12.73 in [40]). Standard errors were esti-
mated by 1,000 bootstrap replicates. The 18S rRNA fragment was not used for these calcula-
tions because of indels within the alignment, which are removed from the calculations
producing severe underestimations of nucleotide diversity.

Results

Detection of trypanosomes
Of the 74 bats examined, 27 (36.5%) were positive for T. cruzi, and only one was positive for T.
rangeli. The species with the highest infection rate was Artibeus fraterculus (90.1%), whileMyo-
tis sp. and Glossophaga soricina were positive in one locality each (Table 1). All positive bats
were negative by direct microscopy, and trypanosomes were detected only by PCR.

Phylogenetic identification of trypanosome lineages
Sequences of the 18S rRNA and cytb genes were obtained from seven out of the eight positive
samples; for one sample (TK 151852), only the 18S rRNA fragment was successfully acquired.
Six out the eight samples were found infected with T. cruzi marinkellei, and two were positive
for Tcbat (S1 Table). The network genealogy of the 18S rRNA gene resulted in distinctive clus-
ters for each genetic lineage (Fig 1). The phylogenetic analysis of the cytb gene revealed five
mitochondrial lineages within T. cruzi sensu lato, differing from the traditional DTU classifica-
tion by clustering in a single clade the DTUs TcIII, TcIV, TcV, and TcVI (Fig 2).

Comparisons of nucleotide diversity among T. cruzi lineages
Among the mitochondrial lineages, T. c.marinkellei shows the largest nucleotide diversity in
the cytb gene, followed in descending order by TcI, TcIII-TcVI, Tcbat, and TcII. The nucleo-
tide diversity within the T. c.marinkellei is 2.6 times larger than in TcI (0.042 vs. 0.017), and
Tcbat nucleotide diversity (0.012) is comparable with the diversity of the pooled DTUs
TcIII-TcVI (0.015) (Fig 3).

Triatomine vectors associated with bats
Triatomine bugs were found in two bat roosting sites. One live adult Cavernicola pilosa associ-
ated withMyotis sp. was found inside the walls of a two-story cinderblock house in Barrio Ran-
cho Alegre, close to the town of Zamora, Zamora Chinchipe Province (WGS84, 78.86497°W,
03.98589°S; 885 m) (Fig 4). One live adult of Triatoma dispar was found associated withMolos-
sus molossus andMyotis sp. in the window crevice of an adobe barn that is used to raise chick-
ens. One of theMyotis sp. was positive for T. c.marinkellei. This barn is close to a two-story
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house located in Chinguilamaca, Loja Province (WGS84, 79.32769°W, 04.18938°S; 1358 m)
(Fig 4).

Discussion
The large genetic diversity for the bat lineages of T. cruzi sensu lato (i.e., Tcbat and T. c.marin-
kellei), together with the phylogenetic pattern of bat-exclusive species basal to T. cruzi (e.g., T.
dionisii, T. erneyii), strongly suggest a long evolutionary history between these parasites and
bats; a history that is longer and more complex than with any other group of T. cruzi reservoir
hosts (e.g., didelphid marsupials). This may indicate that bats are the original reservoir hosts of
T. cruzi, as it has been suggested in the bat-seeding hypothesis [17,18]. Similar rationale has
been implemented in deciphering the origins of the malaria parasite Plasmodium falciparum in
non-human African apes; P. falciparum has higher nucleotide diversity in chimpanzees than in
humans [41], and human parasites nest within gorilla lineages [42].

Trypanosoma cruzi seems to have switched from bats to non-volant mammals more than
three million years ago [43], with humans among the most recent hosts of this parasite, since
the peopling of the Americas occurred less than 15 thousand years ago [44]. Thus, the origins
of Chagas disease can be explained in two series of host switching events. First, a single host
switch likely occurred from bats to non-volant mammals; this should have been facilitated by
generalist triatomines able to interact with bats and non-volant mammals, such as some

Table 1. Results of PCR screenings for Trypanosoma cruzi and Trypanosoma rangeli.

Bat species Locality Bats examined T. cruzi T. rangeli

Artibeus fraterculus Bella Maria Chica, Loja 22 20 (90.1%) 0

Desmodus rotundus Bella Maria, Loja 7 3 (42.9%) 1 (14.3%)

Glossophaga soricina Bella Maria, Loja 5 0 0

Glossophaga soricina Chaquizhca, Loja 12 3 (25%) 0

Molossus molossus Chinguilamaca, Loja 3 0 0

Myotis sp. Chinguilamaca, Loja 18 1 (5.6%) 0

Myotis sp. Rancho Alegre, Zamora 7 0 0

5 species 5 localities 74 bats 27 (36.5%) 1 (1.6%)

doi:10.1371/journal.pone.0139999.t001

Fig 1. Network genealogy using partial 18S rRNA gene sequences from eight new trypanosomes
characterised in this study (in bold) plus 70 other sequences from all DTUs (TcI-TcVI and Tcbat) of T. cruzi
and 22 sequences from T. c.marinkellei. Network constructed with the NeighborNet algorithm excluding all
conserved sites and with uncorrected p-distance. Numbers in nodes correspond to bootstrap support values
using the same parameter optimized for network inferences.

doi:10.1371/journal.pone.0139999.g001

Trypanosoma cruzi in Ecuadorian Bats

PLOS ONE | DOI:10.1371/journal.pone.0139999 October 14, 2015 5 / 13



Panstrongylus and Triatoma species [22]. Second, several host switches of T. cruzi from bats
and wild, non-volant mammals to humans are required to explain the diversity of lineages cir-
culating in human populations, since all DTUs have diverged earlier than the arrival of humans
to the Americas [43]. These host switches to humans could have occurred directly from wild

Fig 2. Mitochondrial phylogeny of Trypanosoma cruzi.Maximum likelihood tree of a fragment of the cytb
gene of Trypanosoma cruzi and T. dionisii as outgroup, representing 60 haplotypes from 362 sequences. The
parentheses at the tip labels contain the number of identical sequences per each haplotype, and in the
TcIII-TcVI group the DTU identity for each haplotype is indicated. Numbers on branches correspond to
bootstrap support values. Stars indicate the haplotypes found in Ecuador.

doi:10.1371/journal.pone.0139999.g002

Fig 3. Mitochondrial diversity of Trypanosoma cruzi. Nucleotide diversity (π) of mitochondrial lineages of
Trypanosoma cruzi calculated for the haplotypes of the cytb gene. The subspecies T. c.marinkellei shows
larger nucleotide diversity than the other examined lineages. Whiskers in each bar indicate the standard
error.

doi:10.1371/journal.pone.0139999.g003
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triatomine populations during the human colonization of the Americas, since the domestica-
tion process of triatomines occurred several times and likely over extensive periods of time
[45].

The findings of Tcbat and T. c.marinkellei in southern Ecuador greatly extend the known
distribution of these lineages. Tcbat has been previously known from few localities in Brazil,
Colombia and Panamá [3,5,6,15]; T. c.marinkellei has been reported in Bolivia, Brazil, Colom-
bia, Panamá, and Venezuela e.g., [2,13,19,29,30,46]. Most of these records are from South
America, east of the Andes, thus these Ecuadorian records from west of the Andes, could prove
useful to track the biogeographic history and dispersal patterns of these trypanosomes. None-
theless, it is surprising that in surveys of bat trypanosomes in Venezuela and Bolivia, Tcbat has
not been detected [30,47], suggesting that this lineage may have a wide but patchy distribution,
with locally high prevalences.

Previously, Tcbat has been reported in association with nine bat species that are either fru-
givorous or insectivorous and belong to the families Emballonuridae, Noctilionidae, Phyllosto-
midae, and Vespertilionidae [3,5,6,48]. Our findings of Tcbat in the phyllostomid bat

Fig 4. Constructions in Ecuador whereCavernicola pilosa and Triatoma disparwere found in
association with bats. A. House with cinderblock walls at Rancho Alegre, Zamora Chinchipe where C.
pilosa (inset) was inhabiting a roost ofMyotis sp. B. Adobe barn in Chinguilamaca, Loja where T. dispar
(inset) was found associated withMolossus molossus andMyotis sp. Arrows indicate the entrances to the
bat roosts where the insects were collected.

doi:10.1371/journal.pone.0139999.g004
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Glossophaga soricina, a mostly nectar feeding species, increase the breadth of dietary guilds of
hosts and reaffirms the host-generalist condition among bats of this T. cruzi lineage. On the
other hand, T. c.marinkellei has been detected in at least 11 species of only phyllostomid bats
[2,13,19,29,30,46]. The positive animals reported here add new host species—A. fraterculus
andMyotis sp.—to T. c.marinkellei.

In addition, Triatoma dispar could be a second potential vector of T. c.marinkellei, since the
trapped individual was found in the roosting site wereMyotis sp. was captured. Previously,
only C. pilosa was thought to be a vector of T. c.marinkellei following the observations of Mar-
inkelle [12]. The paucity in triatomine searches in bat roosts may be responsible for the lack of
information on vectors of the bat lineages of T. cruzi. There are several sylvatic species of triato-
mines, some already reported in association with bats (e.g., Eratyrus cuspidatus, E.mucronatus,
Triatoma rubida, Panstrongylus geniculatus) [22], but new surveys are required to try to isolate
trypanosomes from these triatomines and their bat hosts.

Not surprisingly, PCR detection was more sensitive than direct microscopy [49]. PCR detec-
tion is highly encouraged to detect trypanosomes from preserved tissues and in degraded or
difficult samples e.g., [50–52]. Although the assays with primers S35/S36 and 121/122 work
generally well, we recommend amplification and sequencing of a fragment of the 18S rRNA
gene (see materials and methods), because the amplification bands are bright and easy to visu-
alize, and other trypanosomes species could be detected (e.g., [19,27]).

The T. cruzi prevalence of 36.5% in bats with 90.1% prevalence in Artibeus fraterculus
found in this study is unusually high. Previous T. cruzi surveys in similar environments in
Ecuador detected lower prevalences in non-volant mammals [53,54], indicating that transmis-
sion cycles involving bats could be more active than those in rodents and marsupials in this
region. Some life-history traits make bats ideal long-term reservoir hosts of pathogens: bats are
long-lived animals, are able to use different shelters, and can live in large aggregations that
might attract vectors and facilitate transmission [55]. In particular, A. fraterculus in Loja prov-
ince are resilient to human disruption of the environment, live in large aggregations, and use
man-made structures as roosts [56,57]. Further studies are required to determine the ecological
variables (i.e., triatomine vectors) associated with the high prevalence of T. cruzi in bats.

The triatomines associated with bats reported herein increase the number of the species pre-
viously considered to be restricted to sylvatic environments but which now are also known to
occur in human environments. Previously, Cavernicola pilosa and Triatoma dispar had been
found only in sylvatic conditions and associated with wild mammals [22,58], with exception of
one report of a C. pilosa on a house roof [59], and a recent report of individuals of T. dispar in
domestic areas [60]. C. pilosa has been reported in roost sites of at least nine bat species within
five families [22,58]. Triatoma dispar has been reported associated with the sloth Choloepus
hoffmanni [22,61]. Our findings are the first records of C. pilosa and T. dispar associated with
vespertilionid bats (Myotis sp.), and T. dispar associated to a molossid bat (Molossus molossus).

The findings of C. pilosa and T. dispar within human constructions may be attributed as
accidental colonization, because of our failure to find established colonies with eggs and
nymphs. Nonetheless, bats roost in deep cracks in the walls and roofs, making the collecting
process difficult, and therefore bat roosts may be systematically overlooked in triatomine sur-
veys inside houses. Despite recent intensive triatomine surveys in Ecuador, this is the first
report of T. dispar in Loja province [62–64]. The association of C. pilosa and T. dispar with
bats roosting in human constructions is remarkable as it may have human health implications.
Tcbat has been reported in bats, and recently in association with humans [14,15]. Potentially,
triatomines associated with bats might opportunistically feed on and be able to transmit try-
panosomes to humans. The triatomines reported in this study were collected in constructions
with characteristics associated with risk factors for T. cruzi infections (Fig 4); living in houses
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with adobe walls in Loja province or houses with open and mixed walls in the Ecuadorian
Amazon have been identified as risk factors for anti-T. cruzi seropositivity in human popula-
tions [65,66].

The high nucleotide diversity of T. c.marinkellei supports a long evolutionary relationship
between T. cruzi and bats, implying that bats are the original hosts of this important parasite.
Tcbat and T. c.marinkellei are for the first time recorded in Ecuador, expanding their distribu-
tion in South America to the western side of the Andes, demonstrating that both lineages are
widely distributed in South America. Also, we suggest potential vectors for these two genetic
lineages of trypanosomes associated with bats in rural areas of southern Ecuador.
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S1 Table. Ecuadorian samples sequenced for this study. Trypanosome-positive samples
selected for DNA sequencing with respective GenBank accession numbers, locality, bat species,
and whether trypanosome sequences were obtained from LIT cultures or directly from liver tis-
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S1 Dataset. GenBank accession numbers. 18S rRNA and cytb sequences used in this study
with corresponding GenBank accession numbers within brackets. Codes in bold indicate the
sequences newly generated for this research.
(DOCX)

S2 Dataset. Alignment of a fragment of the 18S rRNA gene. Alignment of an 806 bp frag-
ment of the 18S rRNA gene from 100 sequences of Trypanosoma cruzi sensu lato. This file was
used for the network genealogy (Fig 2).
(TXT)

S3 Dataset. Alignment of 362 sequences of the cytb gene. Alignment of a 490 bp fragment of
the cytb gene from 361 sequences of Trypanosoma cruzi and one T. dionisii.
(TXT)

S4 Dataset. Alignment of 60 haplotypes of the cytb gene. A subset of the alignment of Addi-
tional file 3 containing one sequence per each unique haplotype. This file was used for the cytb
maximum likelihood tree and estimations of nucleotide diversity (Fig 3).
(TXT)
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